186 суток на орбите (спросите у космонавта) - [8]

Шрифт
Интервал

В:Под действием скольких g вы находитесь в ходе взлета?

О: Величина g (ускорение свободного падения) во время запуска зависит от того, на какой ракете вы летите. Вообще, g – это перегрузка. Каждая ракета имеет свой собственный g-профиль, который описывает ускорение, действующее на ваше тело во время всего полета, и от этого зависит перегрузка. На первый взгляд это может выглядеть немного запутанно. Ниже представлен g-профиль нашего «Союз ТМА-19М» (см. стр. 58).

Итак, почему же на графике мы видим три пика? Все дело в том, что для выхода на орбиту необходимо огромное количество энергии. Для получения этой энергии используется ракетное топливо; оно тяжелое и находится в прочных отсеках. После сгорания топлива эти отсеки уже не нужны, и они отбрасываются, чтобы уменьшить вес ракеты. Это называется «ступенчатость»; ракета «Союз» является трехступенчатой. Для экипажа это означает, что в ходе взлета д, действующее на тело, будет изменяться в зависимости от того, на какой стадии мы находимся и сколько топлива уже потрачено.

Максимальное ускорение развивается на первом этапе, когда работают все четыре ускорителя первой стадии. Это позволяет развить мощность в 9 миллионов лошадиных сил и обеспечить более быстрый разгон, чем у болида Формулы-1.

По мере сгорания топлива ракета становилась легче, но ускорение все равно растет, перевалив за значение 4 g.



Это было удивительное чувство – меня все сильнее вжимало в кресло, мышцы живота напряглись; я сосредоточился на правильной технике дыхания, которую отрабатывал несколько месяцев на тренировках в центрифуге… и одновременно старался удержаться от радостного смеха.

После первого сброса произошел сильный толчок, а затем быстрое замедление. Возникло ощущение, что нас толкнули и теперь мы падаем. Вскоре скорость вновь начала расти, хотя и намного спокойнее, чем на первой стадии. Именно на второй стадии я показал в камеру большой палец. Одной из обязанностей командира в ходе взлета является включение камер, чтобы центральное командование могло видеть всех членов экипажа в разные моменты времени. Когда Юрий включил камеры, ускорение было только 1,5g, поэтому было легко поднять руку и помахать.



Еще один толчок, и произошел сброс второй ступени; остался последний, третий сегмент с топливом, и наш КК на его вершине. Мне показалось, что третий этап был самой волнующей частью. Хотя ускорение не было столь же агрессивным, как на первом этапе, ракета, уже поднявшись в космос, в этой точке была в почти горизонтальном положении. Чувство чистой скорости было ошеломляющим, и я, помню, думал: «Как долго это может продолжаться?» После сброса третьей ступени вновь последовал толчок, а затем стало устрашающе тихо, и вдруг предметы внутри корабля начали парить – мы вышли на орбиту.

В:Когда заканчивается и начинается космос?

О: Официально принято считать, что граница между «небом», или атмосферой Земли, и космосом находится на высоте 100 км. Эта граница называется «линией Кармана» (названа в честь Теодора фон Кармана, венгерско-американского инженера и физика). Но все не так просто. Нашу атмосферу трудно измерить, потому что она становится все тоньше по мере увеличения высоты.

Расстояние в 100 км фактически помещает нас в термосферу, которая простирается от 80 км до 500-1000 км. Таким образом, МКС, вращающаяся вокруг Земли на высоте около 400 км, находится именно в термосфере. Это, конечно, космос, но там все еще есть молекулы газов, составляющих воздух. Тем не менее этот «воздух» настолько разрежен, что одна молекула должна пролететь около одного километра, прежде чем случайно встретиться с другой молекулой (насколько эта молекула одинока, можно понять, зная, что сейчас в ваших легких сейчас находится около 3×10>22 молекул газа, или 30 000 000 000 000 000 000 000 000 молекул). И все же действия этой крайне разреженной атмосферы достаточно, чтобы создать небольшое сопротивление, которое приводит к тому, что орбита МКС снижается в среднем на два километра каждый месяц. Вот почему МКС должна периодически перестраиваться, иначе она упадет на Землю. Другие спутники, такие, например, как космический телескоп «Хаббл», орбита которого пролегает на высоте около 560 км, также находятся под действием этого сопротивления и медленно опускаются к Земле.

МКС также перемещается в ионосфере, которая включает в себя термосферу и распространяется далее, вплоть до экзосферы. Ионосфера представляет собой слой атмосферы, ионизированный солнечной и космической радиацией; атомы, лишенные электронов, оставляют за собой оболочку из энергетически свободных электронов и положительных ионов, которая окружает Землю. Для нас хорошо то, что ионизированные газы отражают радиоволны в диапазоне; это делает возможным передачу радиосигналов коротковолнового диапазона на значительные расстояния (в качестве альтернативы вы могли бы, конечно, просто использовать Skype, Face Time, Snapchat…).



Экзосфера простирается до умопомрачительной высоты в 10 000 км, а дальше сливается с солнечным ветром. Космос? Да. Но некоторые ученые считают, что космос начинается на высоте 50 км, на вершине стратосферы, ведь 99 % воздуха в нашей атмосфере находится ниже этой черты. Но Международная федерация астронавтики решила, что линия Кармана будет пролегать на высоте 100 км, где атмосфера Земли настолько ничтожна, что обычные самолеты не могут передвигаться достаточно быстро, чтобы создать аэродинамический подъем.


Рекомендуем почитать
Жизнь и удивительные приключения астронома Субботиной

Нину Михайловну Субботину (1877–1961) можно по праву назвать Стивеном Хокингом российской науки. Одна из первых российских женщин-астрономов, она получила профессиональное образование, но не могла работать в научном учреждении из-за тяжелой болезни, перенесенной в детстве. Создав собственную обсерваторию, Субботина успешно занималась наблюдательной астрономией и изучением солнечно-земных связей. Данные ее наблюдений регулярно публиковались в самых престижных международных астрономических журналах. Но круг ее интересов был значительно шире.


Самые первые

Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.


Можно ли забить гвоздь в космосе и другие вопросы о космонавтике

«Как попасть в отряд космонавтов?», «Что вы едите на борту космического корабля?», «Есть ли интернет на МКС?», «Плоская ли Земля?» – эти и другие вопросы постоянно задают космонавтам. Космонавт Сергей Рязанский в этой книге отвечает на вопросы, которые интересуют многочисленных любителей космонавтики.


Стойкость. Мой год в космосе

Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.


Выхожу в космос

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Военные аспекты советской космонавтики

В книге впервые (1992) в открытой отечественной литературе проводится систематический обзор советских космических систем военного назначения. Приводится классификация военных космических систем по выполняемым функциям, рассматривается организационная эволюция космической программы СССР и описываются советские космические системы военного и двойного назначения. Книга содержит большой справочный и статистический материал и предназначена для специалистов по космической технике, а также для лиц, интересующихся космонавтикой.Автор – выпускник факультета аэрофизики и космических исследований Московского физико-технического института, кандидат физико-математических наук.