100 миллиардов солнц: Рождение, жизнь и смерть звезд - [66]
Оъяснение основано на том, что в магнитном поле траектория электрона искривляется настолько, что электрон начинает двигаться по круговой орбите. Если магнитное поле очень сильное, то радиус орбиты мал; в сверхсильных магнитных полях круговые траектории электронов могут стать сравнимыми с атомными орбитами. Но в этом случае в силу вступают законы квантовой механики, согласно которым «разрешены» лишь строго определенные орбиты. Когда электрон переходит с внешней орбиты на внутреннюю, он испускает квант излучения, энергия которого определяется напряженностью магнитного поля. Поэтому, считали Трюмпер и его коллеги, и появляется пик на кривой излучения источника Геркулес Х-1. Но если это так, то магнитное поле должно быть более чем в сто миллиардов раз сильнее земного! Силы, возникающие в таком поле, настолько велики, что гравитация не смогла бы удержать белый карлик в равновесии: магнитные поля разорвали бы звезду. Поэтому следует заключить, что Геркулес Х-1 является нейтронной звездой.
Итак, в двойной системе, к которой принадлежит Геркулес Х-1, за рентгеновское излучение ответственна нейтронная звезда. Когда-то в этой системе произошел взрыв сверхновой, и первоначально более массивная компонента оставила после себя нейтронную звезду. Но это было очень давно: образовавшееся при взрыве облако давно рассеялось. Сегодня вещество со звезды, которая была менее массивной компонентой и пока еще находится близко к главной последовательности, падает на нейтронную звезду. Когда оно, направляемое магнитными полями, падает в области магнитных полюсов, возникает рентгеновское излучение. При этом излучение, создаваемое при переходе с одной орбиты на другую теми электронами, которые в магнитном поле закружились по крошечным круговым траекториям, имеет пик на 58 кэВ.
После «Ухуру» были запущены другие рентгеновские спутники, проводилось множество экспериментов на аэростатах. Одна из сложностей в рентгеновской астрономии состоит в том, что до сих пор не удалось создать рентгеновскую фотографическую камеру. Рентгеновские лучи невозможно фокусировать с помощью линз. Зеркала тоже не отражают рентгеновские лучи под большими углами: для использования зеркала нужно, чтобы рентгеновские лучи приходили под очень малым углом к поверхности зеркала. Пользуясь этим свойством, физик Ганс Вольтер (1911–1978), работавший тогда в Киле, придумал в 1952 году способ рентгеновской фотографии. С ноября 1978 года на орбите работает запущенная NASA Эйнштейновская обсерватория; на ней установлен рентгеновский телескоп диаметром 57 см. Предполагают, что имеется до миллиона рентгеновских источников, которые могут быть зарегистрированы этим прибором. Первый немецкий «телескоп Вольтера» диаметром 32 см был успешно запущен на ракете в феврале 1979 года. В ФРГ запланировано изготовление 80-сантиметрового рентгеновского телескопа.
Рентгеновские ливни
В последние годы обнаружен еще один тип рентгеновских источников, которые чаще всего, по-видимому, встречаются в шаровых скоплениях. Эти источники посылают рентгеновские импульсы в виде «ливней», каждый из которых, продолжаясь порой всего несколько секунд, обладает такой же энергией, какую наше Солнце излучает за целую неделю. Эти ливни не обнаруживают регулярности источника Геркулес Х-1; вращающееся тело, задающее ритм импульсов, здесь, по-видимому, отсутствует (рис. 10.14). Тем не менее в приходе импульсов наблюдается некая закономерность. Из шарового скопления в созвездии Скорпиона мы принимаем в рентгеновских ливнях импульсы с периодичностью около 40 секунд, которая, однако, выдерживается не слишком строго: после сильного импульса «молчание» длится дольше, чем после слабого. Вероятно, и у этих источников вещество падает на компактный объект, однако механизм, благодаря которому высвобождение энергии происходит не постоянно, а в виде ливней, отличается от механизма, обеспечивающего пульсацию источника Геркулес Х-1.
Рис. 10. 14. Сигналы источника МХВ 1730-335 исходят из шарового скопления, на которое обратили внимание после открытия здесь рентгеновского источника. Импульсы идут сериями по 10–20 отдельных вспышек. Интенсивность вспышек неодинаковая. После особенно сильных выбросов источнику требуется передышка, прежде чем он начнет новую серию импульсов.
Шаровые скопления являются старыми, как мы уже знаем из гл. 2. В них давно уже не рождаются звезды. Было очень заманчиво считать эти скопления безжизненными образованиями. Однако рентгеновские ливни, которые исходят из них, показывают, что в них еще продолжается жизнь.
Во Вселенной может существовать множество нейтронных звезд, о которых мы ничего не знаем. Вероятно, все они являются останками сверхновых, но не исключено, что в природе существуют и иные, неизвестные еще нам пути их возникновения. Нам и не удалось бы ничего узнать о них, если бы на них не падало вещество с их звездных спутников. Только тогда они проявляют себя, посылая к нам рентгеновское излучение.
В 1960 году во время одной из лекций я попросил своих слушателей представить, что существует прибор, который преобразует все приходящее из Вселенной к нам излучение в слышимый звук. Наряду с ровным шумом звезд и треском солнечных помех мы бы услышали шум известных тогда радиосточников, нарастающий и затихающий сообразно с восходом и заходом этих источников на горизонте при вращении Земли. Тогда мы знали лишь о довольно длинноволновом космическом излучении. Сегодня, двадцать лет спустя, мне приходится внести поправки в эту картину. Кроме известных тогда источников, во «вселенский хор» вольются и новые голоса: на фоне ровного шума мы услышим тиканье пульсаров, низкое гудение пульсара в Крабовидной туманности, импульсы которого наше ухо не могло бы уже разделить, пулеметные очереди рентгеновских источников — например, источника МХВ 1730-335, который из шарового скопления посылает к нам мощные импульсы, причем после десятка импульсов с интервалом 10–20 секунд следует перерыв на несколько минут, а потом вновь идет серия импульсов. «Шум Вселенной» — это не только ровное шипение: это и щелчки, и барабанная дробь, и жужжание, и треск. И виновницами всего этого трезвона являются, скорее всего, нейтронные звезды.
14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.
В популярной форме изложены последние данные по геологии Луны, Марса, Венеры; описаны материки и океаны на этих космических телах, процессы оледенения, пыльные бури, гигантские трещины и т. д. Подчеркивается, что знание геологии других планет помогает исследователю разобраться в некоторых сложных проблемах геологического развития Земли, особенно ее ранних стадий.
Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.