100 миллиардов солнц: Рождение, жизнь и смерть звезд - [62]
Именно это и происходит с источником Геркулес Х-1! На рис. 10.6 представлены результаты, полученные спутником «Ухуру» за январь 1972 г.: каждые 1,70017 суток сигнал примерно на пять часов пропадает — источник в это время закрыт другой звездой!
Рис. 10.6. Поведение источника Геркулес Х-1 за достаточно долгое время. Точки показывают интенсивность рентгеновских импульсов, измеренную спутником «Ухуру». Вертикальные двойные линии отмечают период, равный 1,70017 суток. Видны пятичасовые интервалы, в течение которых вспышки исчезают, так как источник заходит за небесное тело, вокруг которого он обращается. Импульсы впервые регистрировались 9 января, а после 21 января исчезли. Это связано с 35-суточным циклом источника Геркулес Х-1, о котором идет речь в тексте.
Но дело обстоит еще сложнее! Рентгеновский источник излучает не все время. В течение примерно двенадцати суток он «включен» и посылает свои импульсы с интервалом 1,24 секунды с пятичасовым перерывом во время затмения. Затем он замолкает на 23 дня, а потом все начинается сначала.
Источник Геркулес Х-1 обнаружен
Что же находится в созвездии Геркулеса в том месте, откуда исходят рентгеновские импульсы? Спутник «Ухуру» мог определить положение источника лишь приблизительно. Как видно на рис. 10.7, в «область ошибки» попадало много звезд. Нет ли среди них такой, которая чем-либо выделяется среди остальных? Американский астроном Уильям Лиллер первым указал в этой области звезду, которая с 1936 г. значится в каталогах как переменная.
Рис. 10.7. Участок звездного неба, где был открыт источник Геркулес Х-1. Неприметная переменная звезда Хоффмейстера отмечена стрелкой.
И снова мы встречаемся с тем молодым лавочником, которому Гартвиг во время первой мировой войны позволил работать в Бамбергской обсерватории. В 1936 г. Гуно Хоффмейстер определил по снимкам звездного неба, что одна из звезд в области созвездия Геркулеса является переменной. Хоффмейстер давно уже защитил диссертацию, имел собственную обсерваторию, построенную частично на его личные средства, и вел систематический поиск переменных звезд. За свою жизнь он открыл их многие тысячи. Звезда в созвездии Геркулеса не представляла собой ничего особенного. Хоффмейстер не смог установить, подчиняется ли изменение яркости звезды простой закономерности, является ли оно периодическим. Когда он позднее следил за звездой еще несколько ночей, ему показалось, что изменения яркости вообще прекратились. В каталоги эта звезда вошла как HZ Геркулеса 1936, и никто не уделял ей особого внимания. Теперь же, когда эта звезда оказалась в окрестности вновь открытого рентгеновского источника, интерес к ней пробудился. Поскольку период обращения рентгеновского источника составлял 1,70017 суток, возникал вопрос, не изменяется ли яркость звезды Хоффмейстера с таким же периодом. Летом 1972 г. Джон и Нета Бакалл, проводя измерения в Тель-Авивской обсерватории, обнаружили, что период изменения яркости звезды Хоффмейстера имеет в точности такую величину.
Таким образом, видимая звезда и рентгеновский источник оказались как-то связанными между собой. Блеск звезды ослабевал, когда рентгеновские импульсы исчезали, т. е. когда источник находился позади звезды. Он усиливался, когда источник, если смотреть от нас, находился перед звездой (рис. 10.8). Причина такого изменения яркости понятна. Когда рентгеновский источник находится перед звездой, обращенная к нам сторона звезды нагревается из-за интенсивного рентгеновского облучения и становится более яркой. Когда же источник находится позади звезды, он нагревает невидимую для нас ее сторону. Если не считать этого эффекта, звезда является нормальной звездой главной последовательности с массой, равной двум солнечным.
Рис. 10.8. Блеск переменной звезды Хоффмейстера HZ Геркулеса периодически усиливался и ослаблялся (красная кривая). На схемах показаны взаимные положения звезды (серый кружок) и рентгеновского источника (черная точка), соответствующие максимуму и минимуму блеска. Когда для нас источник находится перед звездой, обращенная к нам ее сторона нагревается источником и становится ярче. Когда источник заходит за звезду, мы видим ее «нормальную», не разогретую источником сторону, и блеск ослабевает.
Почему же такой опытный наблюдатель как Хоффмейстер позднее счел звезду не переменной? На хранящихся в архивах старых снимках звездного неба можно увидеть, что изменение блеска звезды иногда прекращалось на целые годы. Что же, рентгеновский источник перестает нагревать ее? Может быть, в это время рентгеновский источник выключается? С того времени, как спутник «Ухуру» открыл рентгеновский источник, видимая HZ Геркулеса все время изменяет свой блеск в соответствии с периодом обращения. Но настанет, возможно, время, когда блеск ее снова на несколько лет станет постоянным. Тогда мы увидим, как будет вести себя рентгеновский источник.[25]
Рентгеновские звезды малы
Совершенно иначе ведет себя источник Лебедь Х-1 в созвездии Лебедя. Он посылает не периодические импульсы, а резко и непредсказуемо изменяет свою интенсивность.
14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.
В популярной форме изложены последние данные по геологии Луны, Марса, Венеры; описаны материки и океаны на этих космических телах, процессы оледенения, пыльные бури, гигантские трещины и т. д. Подчеркивается, что знание геологии других планет помогает исследователю разобраться в некоторых сложных проблемах геологического развития Земли, особенно ее ранних стадий.
Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.